1,759 research outputs found

    Bimanual grasp planning reflects changing rather than fixed constraint dominance

    Get PDF
    We studied whether motor-control constraints for grasping objects that are moved to new positions reflect a rigid constraint hierarchy or a flexible constraint hierarchy. In two experiments, we asked participants to move two plungers from the same start locations to different target locations (both high, both low, or one high and one low). We found that participants grasped the plungers symmetrically and at heights that ensured comfortable or easy-to-control end postures when the plungers had the same target heights, but these grasp tendencies were reduced when the plungers had different target heights. In addition, when the plungers had different mass distributions, participants behaved in ways that suggested still-different emphases of the relevant grasp constraints. When the plungers had different mass distributions, participants sacrificed bimanual symmetry for end-state comfort. The results suggest that bimanual grasp planning relies on a flexible rather than static hierarchy. Different constraints take on different degrees of importance depending on the nature of the task and on the level of task experience. The results have implications for the understanding of perceptual-motor skill learning. It may be that one mechanism underlying such learning is changing the priorities of task constraints

    The effect of the “rod-and-frame” illusion on grip planning in a sequential object manipulation task

    Get PDF
    We investigated the effect of visual context (i.e., a visual illusion) on the planning of a sequential object manipulation task. Participants (n = 13) had to grasp a rod embedded in a “rod-and-frame” illusion and insert the rod-end into a tight hole in a pre-defined way. The grip type (defined by start posture, either pronated or supinated; and end posture, either comfortable or uncomfortable) used to grasp the rod was registered as a macroscopic variable of motor planning. Different rod orientations forced the participants to switch between grip types. As expected, most participants switched between pronated and supinated start postures, such that they ended the movement with a comfortable end posture. As it has been argued that planning is dependent on visual context information, we hypothesized that the visual illusion would affect the specific rod orientation at which participants would switch into a different grip type. This hypothesis was confirmed. More specifically, the illusion affected the critical spatial information that is used for action planning. Collectively, these findings are the first to show an effect of an illusion on motor planning in a sequential object manipulation task

    Exploring Action Dynamics as an Index of Paired-Associate Learning

    Get PDF
    Much evidence exists supporting a richer interaction between cognition and action than commonly assumed. Such findings demonstrate that short-timescale processes, such as motor execution, may relate in systematic ways to longer-timescale cognitive processes, such as learning. We further substantiate one direction of this interaction: the flow of cognition into action systems. Two experiments explored match-to-sample paired-associate learning, in which participants learned randomized pairs of unfamiliar symbols. During the experiments, their hand movements were continuously tracked using the Nintendo Wiimote. Across learning, participant arm movements are initiated and completed more quickly, exhibit lower fluctuation, and exert more perturbation on the Wiimote during the button press. A second experiment demonstrated that action dynamics index novel learning scenarios, and not simply acclimatization to the Wiimote interface. Results support a graded and systematic covariation between cognition and action, and recommend ways in which this theoretical perspective may contribute to applied learning contexts

    The effect of distance on reaction time in aiming movements

    Get PDF
    Target distance affects movement duration in aiming tasks but its effect on reaction time (RT) is poorly documented. RT is a function of both preparation and initiation. Experiment 1 pre-cued movement (allowing advanced preparation) and found no influence of distance on RT. Thus, target distance does not affect initiation time. Experiment 2 removed pre-cue information and found that preparing a movement of increased distance lengthens RT. Experiment 3 explored movements to targets of cued size at non-cued distances and found size altered peak speed and movement duration but RT was influenced by distance alone. Thus, amplitude influences preparation time (for reasons other than altered duration) but not initiation time. We hypothesise that the RT distance effect might be due to the increased number of possible trajectories associated with further targets: a hypothesis that can be tested in future experiments

    Posture of the arm when grasping spheres to place them elsewhere

    Get PDF
    Despite the infinitely many ways to grasp a spherical object, regularities have been observed in the posture of the arm and the grasp orientation. In the present study, we set out to determine the factors that predict the grasp orientation and the final joint angles of reach-tograsp movements. Subjects made reach-to-grasp movements toward a sphere to pick it up and place it at an indicated location. We varied the position of the sphere and the starting and placing positions. Multiple regression analysis showed that the sphere's azimuth from the subject was the best predictor of grasp orientation, although there were also smaller but reliable contributions of distance, starting position, and perhaps even placing position. The sphere's initial distance from the subject was the best predictor of the final elbow angle and shoulder elevation. A combination of the sphere's azimuth and distance from the subject was required to predict shoulder angle, trunkhead rotation, and lateral head position. The starting position best predicted the final wrist angle and sagittal head position. We conclude that the final posture of the arm when grasping a sphere to place it elsewhere is determined to a larger extend by the initial position of the object than by effects of starting and placing position. © 2010 Springer-Verlag

    Practice Makes Imperfect: Restorative Effects of Sleep on Motor Learning

    Get PDF
    Emerging evidence suggests that sleep plays a key role in procedural learning, particularly in the continued development of motor skill learning following initial acquisition. We argue that a detailed examination of the time course of performance across sleep on the finger-tapping task, established as the paradigm for studying the effect of sleep on motor learning, will help distinguish a restorative role of sleep in motor skill learning from a proactive one. Healthy subjects rehearsed for 12 trials and, following a night of sleep, were tested. Early training rapidly improved speed as well as accuracy on pre-sleep training. Additional rehearsal caused a marked slow-down in further improvement or partial reversal in performance to observed levels below theoretical upper limits derived on the basis of early pre-sleep rehearsal. This decrement in learning efficacy does not occur always, but if and only if it does, overnight sleep has an effect in fully or partly restoring the efficacy and actual performance to the optimal theoretically achieveable level. Our findings re-interpret the sleep-dependent memory enhancement in motor learning reported in the literature as a restoration of fatigued circuitry specialized for the skill. In providing restitution to the fatigued brain, sleep eliminates the rehearsal-induced synaptic fatigue of the circuitry specialized for the task and restores the benefit of early pre-sleep rehearsal. The present findings lend support to the notion that latent sleep-dependent enhancement of performance is a behavioral expression of the brain's restitution in sleep

    Exact master equation for a noncommutative Brownian particle

    Full text link
    We derive the Hu-Paz-Zhang master equation for a Brownian particle linearly coupled to a bath of harmonic oscillators on the plane with spatial noncommutativity. The results obtained are exact to all orders in the noncommutative parameter. As a by-product we derive some miscellaneous results such as the equilibrium Wigner distribution for the reservoir of noncommutative oscillators, the weak coupling limit of the master equation and a set of sufficient conditions for strict purity decrease of the Brownian particle. Finally, we consider a high-temperature Ohmic model and obtain an estimate for the time scale of the transition from noncommutative to ordinary quantum mechanics. This scale is considerably smaller than the decoherence scale.Comment: Latex file, 28 pages, Published versio

    Epstein–Barr virus-associated inflammatory pseudotumor of the spleen: report of two cases and review of the literature

    Get PDF
    We report two rare examples of Epstein–Barr virus (EBV)-associated inflammatory pseudotumor of the spleen. One patient presented with night sweats, abdominal pain, and weight loss and was found to have a splenic mass on CT scan suspected of lymphoma. The splenic mass in second patient was found incidentally at the time of work up for kidney stones. The pathologic examination of these splenectomy specimens showed similar histologic features. However, the spindle cells were composed of EBV-infected follicular dendritic cells in one case whereas the second case lacked significant follicular dendritic cell proliferation and showed only focal EBV-infected cells suggesting that these proliferations are heterogenous in nature

    Action planning with two-handed tools

    Get PDF
    In tool use, the intended external goals have to be transformed into bodily movements by taking into account the target-to-movement mapping implemented by the tool. In bimanual tool use, this mapping may depend on the part of the tool that is operated and the effector used (e.g. the left and right hand at the handle bar moving in opposite directions in order to generate the same bicycle movement). In our study, we investigated whether participants represent the behaviour of the tool or only the effector-specific mapping when using two-handed tools. In three experiments, participants touched target locations with a two-jointed lever, using either the left or the right hand. In one condition, the joint of the lever was constant and switching between hands was associated with switching the target-to-movement-mapping, whereas in another condition, switching between hands was associated with switching the joint, but the target-to-movement-mapping remained constant. Results indicate pronounced costs of switching hands in the condition with constant joint, whereas they were smaller with constant target-to-movement mapping. These results suggest that participants have tool-independent representations of the effector-specific mappings
    corecore